Bạn đang xem: Chuyên đề bất phương trình chứa dấu giá trị tuyệt đối

*
5 trang
*
ngochoa2017
*
19675
*
6Download

Xem thêm: Ý Nghĩa Của Từ Super Trouper Là Gì, Super Trouper (Bài Hát)

quý khách vẫn coi tài liệu "Chuyên ổn đề 2: Pmùi hương trình với bất pmùi hương trình cất cực hiếm xuất xắc đối", nhằm tải tư liệu cội về sản phẩm công nghệ bạn cliông chồng vào nút DOWNLOAD làm việc trên

11Chulặng đề 2 PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH CHỨA GIÁ TRỊ TUYỆT ĐỐI TRỌNG TÂM KIẾN THỨC I. Định nghĩa và những đặc thù cơ bạn dạng : 1. Định nghĩa: A giả dụ A 0 nếu như A B ⇔ A2 > B2 III. Các phương thơm trình cùng bất pmùi hương trình chứa quý giá hoàn hảo cơ bạn dạng và cách giải : Phương thơm pháp bình thường để giải các loại này là KHỬ DẤU GIÁ TRỊ TUYỆT ĐỐI bằng có mang hoặc nâng lũy quá. * Dạng 1 : 22 BABA =⇔= , BABA ±=⇔= * Dạng 2 : ⎩⎨⎧=≥⇔= 220BABBA , ⎩⎨⎧±=≥⇔=BABBA0 , ⎢⎢⎢⎢⎢⎣⎡⎩⎨⎧=−⎧⎧≥2200BABBBA , B 0A B B 0A B A B ⇔ ≥⎧⎢⎨⎢ ⎩⎣IV. Các bí quyết giải phương trình đựng cực hiếm tuyệt vời thường xuyên áp dụng : * Phương thơm pháp 1 : Biến thay đổi về dạng cơ bản Ví dụ : Giải những phương thơm trình sau : 1) xxxx 22 22 +=−− 2) 3342 +=+− xxx 3) 21422=++xxBài giải: 1) Ta cĩ: 2 22 22 22x x 2 x 2xx x 2 x 2xx x 2 x 2x22 xx 33 1 172x x 2 0 x4⎡ − − = +⎢− − = + ⇔ ⎢ − − = − −⎢⎣⎡⎡ = −⎢= −⎢ ⎢⎢⇔ ⇔ ⎢⎢ − ±⎢+ − =⎢ =⎢⎣ ⎢⎣ Vậy tập nghiệm của pt(1) là 2 1 17S ;3 4⎧ ⎫⎪ ⎪− ±⎪ ⎪= −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭2) Ta cĩ: 22222x 3 0x 4x 3 x 3x 4x 3 x 3x 4x 3 x 3x 3 x 3x 0x 0 x 5x 5x 0 x 5VNx 3x 6 0⎧ + ≥⎪⎪⎪⎪⎪⎡ − + = +− + = + ⇔ ⎨⎢⎪⎢⎪⎪ − + = − −⎢⎪⎣⎪⎩⎧ ≥− ⎧ ≥−⎪ ⎪⎪ ⎪⎪ =⎡⎪⎪ ⎪⎪⎡ ⎢= ∨ =⎡− =⇔ ⇔ ⇔⎨ ⎨⎢ ⎢⎢ =⎪ ⎪⎢ ⎢⎪ ⎪⎢ ⎣⎪ ⎪− + =⎢ ⎢⎪ ⎪⎣⎪⎩⎣⎪⎩ Vậy tập nghiệm của pt(2) là S 0;5= 3) Ta cĩ: 13222 22x 4 2 x 2 x 1x 1 x 4x 4 x 13 x4+ = ⇔ + = ++⇔ + + = +⇔ =− Vậy tập nghiệm của pt(3) là 3S 4= − * Phương thơm pháp 2 : Sử dụng phương thức chia khoảng ví dụ như : Giải phương thơm trình sau : ( )x 1 2x 1 3− − = (1) Bài giải: Trường vừa lòng 1: Với x 1≥ thì ( ) ( )( )2x 1 2x 1 3 x 1 2x 1 3 2x 3x 2 0x 2 1x (loai)2− − = ⇔ − − =⇔ − − =⎡ =⎢⎢⇔ ⎢ = −⎢⎣Trường thích hợp 2: Với x 1 (1) Bài giải: Bảng xét dấu: x −∞ 0 2 +∞2x 2x− − 0 + 0 − Xét từng khoảng chừng 1) Với x 0 x 2 thì 2 2 2 2x 2x x 4 0 x 2x x 4 0 x 2− + − > ⇔ − + + − > ⇔ > So với điều kiện đã xét ta suy ra nghiệm của bpt là x 2> 2) Với 0 x 2≤ ≤ thì 2 2 2 2 2x 1x 2x x 4 0 x 2x x 4 0 x x 2 0x 2⎡ ⇔ − + − > ⇔ − − > ⇔ ⎢ >⎢⎣ So cùng với ĐK vẫn xét ta suy ra khơng cĩ cực hiếm như thế nào của x vừa lòng điều kiện . Vậy tập nghiệm của pt(1) là ( )S 2;= +∞ - 15CÁC BÀI TỐN RÈN LUYỆN Giải các phương trình sau: 1) x 2 2x 1 x 3− + − = + Kết quả: x 3 x 0= ∨ = 2) ( )2x 1 x 1 2x x 2− + + =− Kết quả: x 5= 3) ( )( )4 x 2 4 x x 6+ = − + Kết quả: x 2x 1 33⎡ =⎢⎢ = −⎢⎣------------------------------------Hết---------------------------------

Bài viết liên quan

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *